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An exact analytic solution is derived for the perturbation of a magnetic field 
while exposed to an immersed, axisymmetric, azimuthal, steady current source 
of arbitrary distribution in the presence of a slender, electrically conducting, 
independently permeated, compressible jet threading the axis of symmetry, 
subject to an equilibrium pressure balance. A further influence is the enclosure 
of the magnetic field by a coaxial cylindrical wall. The steady-state result in- 
variably exhibits an infinite discrete superposition of axially decaying terms. 
In  addition, there arise two admissible alternatives involving a fluid parameter 
h (dependent on the flow speed, sound speed and both Alfvbn speeds pertaining 
to the jet) together with a scale parameter x(0) (equal to twice the ratio of the 
cross-sectional area of the jet to that of its externally enveloping field). Provided 
that h exceeds x ( O ) ,  each element constituting the current distribution induces 
a stationary-wave contribution confined, as a consequence of an applied radiation 
condition, to the upstream domain, corresponding to an upstream-directed 
group velocity. However, if h is exceeded by x ( O ) ,  this upstream wave is replaced 
by another decaying term, acting on both sides of every current constituent, 
like all other decaying terms. 

1. Introduction 
The existence of an upstream stationary wave along a plasma-magnetic field 

interface was first theoretically demonstrated by Savage (1967), who worked 
with a rectangular configuration comprising a thin layer of fully ionized, mag- 
netically field-free, moving plasma sandwiched between two equal unbounded 
magnetic fields. Savage then went on to study the case of a plasma layer of finite 
thickness, and showed that a subsonic upstream wave occurs under certain 
flow conditions. During supersonic motion, downstream waves appear instead. 
If the field-free plasma is replaced by a field-traversed but incompressible con- 
ducting fluid (Savage 1970), then whenever a stationary wave appears on an 
interface, it  does so only upstream. The generating sources are of specific types, 
viz. a pair of magnetic dipoles (Savage 1967) placed within the confhing field, or 
an algebraically decaying pressure (Savage 1970) exerted along the interface. 
The solutions possess extra terms, normally in the form of Laplace integrals. 
Except for the fact that these are decaying along the stream direction, little 
else is revealed about them. The possibility that these integrals might furnish 
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decaying waves has apparently been overlooked. Consequently, only the asymp- 
totic forms of Savage’s results are truly explicit. 

The present paper somewhat complements a recent investigation (Chee-Seng 
1972). The latter deals with the disturbance of an axisymmetric MGD configura- 
tion wherein a compressible conducting cylindrical jet of substantial thickness is 
both permeated internally and contained externally by stream-aligned magnetic 
fields, the external field being unbounded. The results obtained are all asymptotic. 
If the jet motion is elliptic (in the sense of McCune & Resler 1960), a further 
restriction on the flow parameters leads to an upstream stationary wave. 
Alternatively, with hyperbolic jet motion, one encounters an infinite train of 
stationary waves, all of which are, in the case of a supersonic super-Alfv6nic 
jet, to be found downstream. In  particular, the conclusions reached concur with, 
being in fact the cylindrical analogue of, Savage’s observations (1967, 1970) if, 
respectively, the permeating magnetic field is reduced to zero for a field-free jet, 
or the sound speed is raised to infinity to attain incompressibility. 

Chee-Seng’s analysis does not cover the situation where the jet column is 
slender (thin compared with the extent of the surrounding field). Furthermore, 
it suffers from a defect similar to Savage’s in not yielding ample details of decaying 
(i.e. error) terms. These shortcomings are all remedied in the present paper, 
which is devoted to the establishment of an exact solution consistent with a slender 
jet. Perturbations originate from an azimuthal source current having an 
arbitrary axisymmetric distribution. Largely responsible for enabling an exact 
evduation is the closing of the external confining field by a coaxial cylindrical 
wall of finite radius. There are just two possibilities, relating to a flow parameter h 
and a scale ratio ~ ( 0 ) .  Provided that h > x ( O ) ,  a stationary wave emerges up- 
stream. But if h < x ( O ) ,  no stationary wave exists. Other terms are involved, 
there being an infinity of these, all of which are non-wavelike but, in fact, strictly 
decaying exponentially with increasing axial distance, on both sides of any 
current cross-section. Across the plane containing such a cross-section, the dis- 
placement of a magnetic line of force is continuous. The upstream phenomenon 
ensues from a mathematical interpretation of a basic physical notion, precisely, 
a radiation condition incorporated in accordance with Lighthill (1960, 1965). 

There is a separate class of plasma waves in bounded systems of the Kruskal- 
Schwarzschild type (Kruskal & Schwarzschild 1954), namely, small amplitude 
Alfvkn and ion cyclotron waves (Stix 1957, 1958, 1962) formed during steady 
harmonic excitations of a column of cold, pressureless, perfectly conducting 
plasma with zero electron mass contained axially by a vacuum field. 

2. Formulation 
We consider an infinitely long, slim, cylindrical jet of non-gravitating, inviscid, 

perfectly electrically conducting, compressible fluid within which is trapped an 
axial magnetic field. Outside the jet, aligned with and confining it, is another 
magnetic field (of uniform strength B,, say), occupying a layer of vacuous space. 
This is, in turn, bounded by a perfectly conducting, coaxial, cylindrical solid wall. 
Into this equilibrium configuration, small perturbations are initiated by a weak 
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azimuthal current source, having an arbitrary axisymmetric density distribution 
I(%, r ,  t ) ,  say, over a coaxial tubular conductor (so(x) < r < sl(x)) stationed in the 
vacuum field. Throughout, x is the axial co-ordinate, r is the radial co-ordinate 
measured from the axis of symmetry, while t represents time. Variations generated 
within the vacuum field are, correspondingly, small and axisymmetric. In  con- 
structing the asymptotic solution, Chee-Seng (op. cit.) found it convenient to  
assume a k i t e  length for the current distribution. For the present problem, to 
which an exact solution is sought, this restriction will not be imposed. However, 
should the current distribution extend to x = k 03, then it is understood that its 
source function I(%, r ,  t )  must be appropriately well behaved at II; = & co. 

A significantly slender jet is governed by, effectively, one-dimensional equa- 
tions involving x: and t. Suppose that H is the total (i.e. perturbed) magnetic field 
trapped within the jet and S = IS1 is its variable normal cross-sectional area. 
The Cowling-Walen frozen-field condition, which incorporates both the induction 
and divergence equations, is then expressible as 

g l s H . d S  = 0 ,  (2.1) 

with D/Dt denoting differentiation following the motion. Suppose that, in the 
uniform equilibrium phase, Ho is the axial magnetic field frozen into the jet, yo 

is its radius, U is its velocity in the positive-x direction, po is its density and p o  
is its pressure. Let the corresponding small variations from these quantities 
be, respectively, h, 7, u, p and p .  In  particular, 7 = 7 
tortion of the jet profile. From (2.1), then, 

D[(Ho + h) (yo + ~ ) ~ l / D t  = 0. 

The continuity condition is 

a a 
-[(Po at +-PI (r0+r)21 +,,[(Po + P )  (ro+r)2 

and the axial momentum equation is 

G, t )  is the transverse dis- 

U+U)] = 0 

- .  ah 

j h  being the magnetic permeability of the fluid. From now on, all nonlinear 
equations are linearized for sufficiently small perturbations. Thus, the last three 
equations simplify to 

ro Dh/Dt + 2H0 Dq/Dt = 0, ( 2 . 2 )  

ro Dp/Dt + 2p0 Dy/Dt + po ro &/ax = 0, 

po DulDt + a p / a X  = 0, 

(2 .3)  

(2.4) 

which we accompany with the equation 

DplDt = c2Dp/Dt, (2 .5 )  

for the equilibrium sound speed c of the fluid. Amongst these four equations, only 
(2.2) includes magnetic effects, the other three equations being strictly non- 
magnetic. 

50-2 
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To construct a unique steady-state solution associated with a steady source 
current, we accommodate a radiation condition in the manner of Lighthill (1960, 
1965; aee a,lso Savage and Chee-Seng op. cit.) by dealing preliminarily with an 
exponentially growing current : 

(4n-/B0)1(g,r,t) = e"J(x,r) (e > 0). (2.6) 

Let us introduce the Fourier transform (indicated by an asterisk) 

(2.7) 

whose inverse 

(2.8) 

According to Lighthill, any dependent variable must be allowed, in the unsteady 
development, to  expand exponentially in step with the source. Thus, if 5 is 
t'he axisymmetric radial displacement of a magnetic line of force of the perturbed 
vacuum field exterior to the jet, then during the development stage, 

( = ectJ a, (*(a, r ;  e) eiax da. (2.9) 
-uJ 

In  this case, the transformed radiation equation governing g* = E*(a, r; E) is 
(cf. Chee-Seng op. cit.) 

(2.10) 

an inhomogeneous Bessel equation. Whence, on accommodating the Wronskian 
relation 

(2.11) 

for the modified Bessel functions I,(x) and K,(z) of order n, the method of 
va,riation of parameters yields 

K,(z) I;@) -I&) KA(z) = 2-1 

K , ( K ~ ) J * ( c x , K ) K ~ K  

The values A(a, e) and B(a, e) may be determined from appropriate boundary 
conditions which we shall next proceed to formulate. 

The internal magnetic pressure plus the fluid pressure within the jet must 
balance the external magnetic pressure exerted by the vacuum field across the 
interface. In particular, during the initial undisturbed equilibrium, 

po  -+ , ~ H i / 8 n  = Bi/8Z. (2.13) 

Whereupon, in the perturbed state, the specified pressure condition is reducible to 

(2.14) 
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(cf. Chee-Seng) under Fourier transformation. Now, the frozen-field condition 
(2.1) implies that the jet column is actually an H tube of force. Consequently, 
continuity of the normal magnetic field component across the interface requires 

q* = 5" at r = r,. (2.15) that 

Taking into account the fact that the Fourier transform, via (2.9), of Dq/Dt is 
( a+ iaU)  r* in linearized motion, a combination of (2.2)-(2.5) leads to 

To[ (  u - i€a-1)2 - C 2 ]  [p* + (,Uf&/47T) h*] 
= 2po{a2[c2 - ( U - i ~ a - ~ ) ~ ]  - c2( U - i ~ a - l ) ~ }  7 * , ( 2.1 6) 

in which a = (pLH$/4npo)* is an internal Alfv6n speed for the jet. Let 

a, = (G$/4np0)+, 

an interface Alfvh speed, and define a function h of V :  by 

A( V )  = (2/at) [ C 2 7 2 / ( C 2  - V2) - a21 (2.17) 

for any argument V .  Prom now on, we assume U =k c. Then, from (2.14)- 
(2.16), the pressure condition on [* is 

(2.18) 

There is an independent condition, namely, that, along the perfectly conducting 
cylindrical wall of radius r l ,  say, enclosing the vacuum field, this vacuum field 
has a zero normal component, so that 

ro a[*/& + fl* + [*A( U - isa-1) = 0 at T = r,. 

[* = 0 a t  r = rl. (2.19) 

To complete the determination of E*, (2.18) and (2.19) must be applied to 

(2.20) 

(2.12). In  doing this, the recurrence relations 

are required, The algebra is highly involved, however, and we shall merely dis- 
play the result obtained. Thus, within ro < r < rl ,  

z I ; ( z )  = zlo(x)  - I1(z), zK;(z) = - zKo(z) - K,(z) 

9.1 &(r, ro, a;  u - iea-1) 
T ( K ,  TI ,  a) J*(a, K )  K d K  f r &(rl, To, a; u - isa-1) 

f l*(a,r;s) = 

3. A Green's function and its Fourier transform 
In  accordance with Lighthill's (1960, 1965) interpretation, the unique steady- 

state solution for fl  is obtained from (2.9) by, first, evaluating the integral 
representation and then letting e + 0 + . Precisely, substituting the expression 
(2.21) and using (2.7), we can express, during the steady state, 

[ = /:adx/rrlG(x - z ,  r ,  K )  J(z ,  K )  K ~ K  + dx G ( x  - z ,  K ,  r )  J ( z ,  K )  K d K ,  (3.1) 
/yo Jr: 
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where 

for ro < r < K < rl, and whose Fourier transform 

Y ( K ,  rl ,  a) &(r, ro, a; u- ka-1) 
G*(a, r, K ;  E )  = 

27-r Q(rl, To, a; u - i E a - 1 ) .  
(3.3) 

Corresponding to a unit source current carried round a circular filament of 
radius K and centre (2, r )  = (0, 0 ) ,  

J(X, r )  = r-l&(X) a(?" - K )  (To < K < T I ) ,  (3.4) 

G(x ,  r ,  K )  in ro < r < K < rl, (3.5) 
G(x, K ,  r )  in ro < K Q r < rl, (3.6) 

6(x) being the Dirac delta function, we have 

5 = {  

which is indeed continuous a t  r = K .  Evidently, the quantity C ( x ,  r ,  K )  defined 
by (3.2) is a Green's function (or kernel) for the present problem, and in all 
subsequent analysis pertaining to  it,  we assume that the observation position 
(x, r )  =/= (0, K ) ,  i.e. anywhere along the current loop (3.4). 

To determine the Green's function G(x, r ,  K ) ,  we must first examine the complex 
(a) extension of its transform given by (3.3). Now, in view of (2.17) and (2.22), we 
note that 

F(T,  a, li) = (c2 - U2)  Q(r, ro, a; U )  

is linear in U 2 ,  so that F(r,  a,  U - isa-l) is a quadratic (polynomial) function of 
i6a-l. Whence, (3.3) can be expanded into a more accessible form: 

(3.7) 
Y(K,  r,, a) a2F(r, a, U )  - k a F U ( ~ ,  a, U )  - &E2FuV(r, a, U )  G*(a,r, K ;  E )  = 

27r a2F(rl,a, U)-kaFU(r l ,a ,  U )  -&s2Fuu(r l ,~ ,  U ) '  

the suffix U indicating a U derivative. Now it follows from theorem 1 (see appen- 
dix) that  Y ( ~ , r ~ , a )  and &(r,ro,a; U )  are analytic functions of a. Hence, (3.7) 
defines a meromorphic function of a whose only singularities in the complex 
plane are poles located a t  the zeros of the denominator. As e + 0 + , this de- 
nominator approaches a2F(r,, a, U ) ,  which possesses two zeros coinciding a t  
a = 0 and additional a-zeros identical to  those of Q(rl, r,, a; U )  (cf. (A 5), appen- 
dix). Via theorems 2-4 all a-zeros of the latter function are fully definable by the 
following cases. 

Case A( U )  > ~ ( 0 ) .  Two real zeros at 

a = i: lal)\, (3.8): 

plus an infinity of imaginary zeros a t  

a = kila,,l (v = 1 ,  ...,a), 
governed by 

(3.9) 

lK l l  < la11 < lKal < la21  < a * *  < lKnl < Ian1 < IKn+ll  < ... ) (3.10) 

5 il~"l (v = 1, ...,a) being the entire set of a-zeros (all imaginary, cf. Gray & 
Mathews 1922, chap. 7) of Y(r , ,  ro, a). 
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Case A( U )  < ~ ( 0 ) .  Only imaginary zeros are admitted, viz. at 

with 

Here. 

on application of (A l), (A4),  (A 6) and (A 16) to (A 17). AlI such zeros of 
Q(rl, ro, a; U )  are simple (i.e. distinct) and non-coincident with the origin a = 0, 
about which they are clearly symmetric. [According to theorem 3, a double zero 
of Q emerges at a = 0 whenever A( U )  = ~ ( 0 ) .  It can be demonstrated that this 
double zero would give rise to a solution G(z, r ,  K )  = O(x)  as 1x1 -f 00, a phenomenon 
which is incompatible with linearized theory. Henceforth, we avoid the situation 
A( U )  = x ( O ) ,  in which case, F(rl, 0, U )  + 0.1 

The Fourier integral of (3.2) can be tackled for small positive B before the 
limit at B = 0 + is attained. Obviously, when E is sufficiently small, the denomi- 
nator in expression (3.7) has all its a-zeros almost coincident with those of 
azF(rl, a, U ) ,  viz. two zeros almost overlapping at 01 = 0 plus simple zeros nearly 
coincident with the simple zeros (defined under (3.8)-(3.12)) of &(rl,rO,a; U ) .  
The former are (approximately) determined by 

a = i@&l> 0, U )  i (%(% 0, U )  - 2 m 1 > 0 ,  U )  Fuu(r1,0, U))t1/2~(r,,O, U ) ,  
(3.14) 

being slightly separated and O(s) .  Regarding the latter zeros, the particular 
simple zero near any simple zero a = a” of Q(rl, ro, a; U )  appears at 

where 
a: = cc,+i€/V(a,), 

V(a,) = 01~&(r1, u)/Fc(yi> a,, 7.J) azPQa(ri, r o , ~ ~ ;  u)/Qu(ri, ro, 01v; U ) ,  

with Q, E aQ/& In the case of a real a, = & laol (for h(U)  > x ( O ) ,  cf. (3.8)), 
V(av)  is a group velocity associated with a wave dispersion relative to a stationary 
frame (see Chee-Seng 1972). Application of (2.22) and the appendix result (A 15) 
yields 

on further accommodating the fact (A 9) : 

Y(r,, r ,  a) = Y(rl, r,  -a). (3.16) 

From (2.17), A’( U )  = 4Uc4/at(c2 - U2)2 > 0 (since U > 0 ,  corresponding to which 
x > 0 is the downstream region relative to the current loop of (3.4)). Thus, at 
the two real zeros rf: lao] for h(U)  > x ( O ) ,  the group velocity function 

Rlaol) = V(-Iaol) < 0. (3.17) 

However, at  any symmetric pair of imaginary zeros 5 ila,[, displayed in (3.9) 
or (3.11), we always have 

V(ila,l) = V (  -iIa,\) > 0. (3.18) 
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Summarizing, we conclude that, sufficiently near e = 0 + , G*(a, r,  K ;  E )  always 
possesses an infinite set of pairs of almost symmetric, purely imaginary, simple 

(3.19) 
poles at  

each such pair having undergone a slight, vertical upward displacement (cf. 
(3.18)), through the distance ~/V( i la”] ) ,  from the respective positions i1aJ. la 
accordancewith(3.11), thesuffixv = O , l ,  ..., ooforh(U)  < ~(O).However,when 
A( U )  > x ( O ) ,  then v = 1, ..., co; but to compensate for a deficiency of two simple 
imaginary poles, there arise two simple, slightly complex poles at 

(3.20) 

both situated, in view of (3.17), within the lower half-plane I m a  < 0, close to  
the real positions k la,]. To ensure that the pertinent upward displacement from 
tthe particular - ilavI position nearest the Re a axis does not cross this axis, we 
require 

a = k i(la“l k E/v(ila”l)), 

a: = k 1601 - t i ~ / v ( l a ~ l ) ,  

E < I 4  V(ila0l) ( 4 U )  < X ( O ) ) ,  fz < 1.11 WI4) ( 4 U )  > x(0 ) ) .  

In addition, there are, near a = 0, two simple poles expressed by (3.14). This 
completes the enumeration of all singularities possessed by the meromorphic 
function G*(a, r ,  K ;  E ) .  

4. An exact evaluation 
We next proceed to establish the exact value of the Fourier integral of (3.2) 

via contour integration. Ultimately, this Fourier integral acquires only residue 
contributions from all singularities of G*(a, r, K; 6). Now, it can be formally de- 
monstrated that the residue contribution from each of the two simple poles 
expressed by (3.14) is O(e). This is not surprising as (3.7) reveals that, as E -+ 0 + , 
G*(a, r,  K ;  6) approaches analyticity at a = 0. Consequently, both these poles, 
being virtually non-contributing in the limit, will be completely ignored from 
here on. For our analysis, let us concentrate only on the situation where 

4U) > X ( O ) ,  

and deduce corresponding effects at  the end (also, at  end of $ 5 )  for the com- 
plementary case A( U )  e ~ ( 0 ) .  

Before applying residue theory, we require certain contour deformations onto 
large circular arcs. Along these arcs, relevant asymptotic approximations hold. 
Employing the asymptotic formulae for the modified Bessel functions in (2.22)- 
(2.24), we have, as )a1 3 00 within ]Real > 0, 

Y ( ~ , r ~ , a )  - -exp [(rl-K)asgn(Rea)l/2(m-,)tasgn(Rea) 

Q(r, r,, a;  U -iea-l) - @(r, r,, a)  N +(ro/r)Bexp [(Y - yo) a sgn (Recc)] 
(rl > K ) ,  

( r  > r,,), 

where sgn(Rea) = i- 1 for Rea30 .  Hence, substituting into (3.3), which is 
defined for ro < r < K < rl, 

G * ( ~ , Y , K ; c )  N -exp[(r--K)asgn(Rea)]/4z(icr)kasgn (Rea) (IReal > 0) .  

(4.1) 
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Y(r , ,  ro, a) - sin [(r, -ro) Im a]/(r,r,,)* Im a, 

Q(rl,  ro, a; U - iea-1) - @(rl, r,,, a) - (ro/rl)3 cos [(rl - ro) Im a]. 

793 

However, along the imaginary axis Re a = 0, 

Thus, in the far region, the a-zeros of Y ( r l ,  yo, a) appear at 

i - i l~~ l  N +ivn-/(rl-r,,), (4.2) 

il a,\ N f i( v + 4) n/(rl - Y o ) ,  

and these are, consistent with the monotonicity implied by (3.10) or (3.12), 
interlaced with the positions 

(4.3) 
which obviously approximate thosefar poles covered by (3.19). Here, the positive 
integer v takes appropriately large values. Suppose that I' is a sufficiently large 
circular arc a = R,eio(lBI =# *a) which never (quite) intersects the I m a  axis, 
but is confined to either R e a  > 0 or R e a  < 0. Let the radius R, = vn/(rl-ro). 
So as v + 00, R, -+ 00. From (4.1), 

4n(Kr)*l/r~*(a, r, K ;  E )  eiazda I 
- / / ~ p  { -R,[xsin6+ (K - r )  lcos 6l]> 

which remains bounded under 161 $: 

Let (x, K - r )  = R(cos w ,  sin w ) ,  with R + 0. Since K 2 r ,  therefore 0 Q w Q n. 

which (4.5) holds is then 

either in- > B 3 - w ,  or a + w  2 B > &T. 

Consider the two circular mcs totally described inside Rea  > 0 and Rea  < 0 
such that they join R, e-io and R, ei(n+w) to the two points iR, + 0 k respectively 
(see figure 1). Along any portion of each of these two arcs, (4.5) is invariably 
satisfied by 6 = arga. This is not so however along circular extensions of these 
arcs beyond their lower ends R, ciw and R, ei(n+w). When r = K (x > 0 ) ,  these two 
ends are at R, and - R,; but if x = 0 ( r  < K), they must be taken at  - iR, + 0 k . 
Otherwise, the lower ends are simply restricted to the fourth and third quadrants. 
In  particular, the integral involved in (4.4) is convergent when v --f co if, with 
reference to figure 1, I' is selected to be any one of the following four circular arcs: 
the quarter-circles rl and Fa; the two serrated arcs joining R, to R, e- iw,  and - R, 
to R,ei(n+w), in the case r =k K. Thus, with I' = rl, for instance, 

as v --f 00 if, and only if, 

x s inB+(~- r )  Icos6I 2 0 all along I?. (4.5) 

Suppose that x 2 0, i.e. 0 Q w < in. The permissible range of 6 throughout 



794 L. Chee-Seng 

Ill1 5( 

t 

I 

FIGURE 1. Alternative contour deformations for x 3 0. As x + 0 + (r < K ) ,  the two sectors 
bounded by the serrated deformed contour expand (arrow indications), with the edges 
B,e-iu and Rued('"*) approaching - iR, + O +  and --iR,+ 0 - , respectively. However, if 
r -+ K +  0-  (x > 0 ) ,  both these sectors gradually diminish, collapsing (at r = K )  onto the 
real interval ( - R,, R,). The imaginary poles are portrayed in their slightly asymmetric 
positions (3.19). Both near-real poles exist separately at f (a,l +ie/V([a,l) provided that 
h(U)  > ~ ( 0 )  (but are converted into two imaginary poles +ilcc,l+is/V(ila,l) when 
h(U) < ~ ( 0 ) ) .  The turo near-zero poles of (3.14) are not represented. 

c P 

Whence, J -+ 0 as v -> 00. Similarly, it can be proved that J -+ O as v -+ co. To 
rl r. 

cc Rv 
determine the integral1 of (3.2), we identify it as being lim! . For this . -cc Y+W -R, ,  - .~ 

purpose, the real path ( - R,, R,) may be deformed, when x 2 0 and K 2 r ,  into 
a complex contour comprising r2, 9+ and Fl (arrowed as depicted in figure 1). 
The path rz is connected at iR, + 0 - to PI at  iR, + 0 + via 2', a narrow vertical 
loop encircling and indented with small semicircles (on both sides) about all 
those imaginary poles of (3.19) which fall below the level of iR,, but are high 
enough in I m a  > 0 to conform to the first approximation given in (4.3). As v 
increases over positive integral values, the number of imaginary poles thus 
engulfed grows. During this process, the two ends of the loop 2+ always hurdle 
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across the level of any such incoming pole since iR, = ium/(rl-r0) =k iIa,l, but 
N il~,I (cf. (4.2) and (4.3)). So all indentations on either side of and about these 
poles must indeed be full semicircles. Consequently, invoking residue theory, 

1:;" = Sr,+Sp+ +Srl + 2n-i (relevant residues) 

+ 2ni C residue {G*(a, r ,  K ;  e) eiaz) 
lad < R v  4 a v l  +i4V(ilavl) 

P 

J Y i  
because the integrations over all straight segments of 9+ cancel, so that 

- ,  

a,ccumulates only residue contributions from those far simple poles circumscribed 
by A?+ below iR,. Therefore, letting v + m, we obtain, in terms of the semi- 
infinite set of simple imaginary poles within Im a > 0,  

m 

= 2n-i residue {G*(a, r, K ;  8 )  eia2} (z 2 0 ) ,  (4.6) s:, v = l  ala"l+i€/v(ilor"l) 

whenever A( U )  > ~ ( 0 ) .  Alternatively, provided that r $: K ,  the path ( - R,, R,) 
may be deformed into the serrated contour (arrowed) composed of the circular 
arc ( - R,, R, ei("+")), the two straight paths (R, eq"+O), 0) and (0, R, erio), plus 
another circular arc (R, e-io, R J .  This choice, however, leads to an apparently 

different form for , consisting of two residue contributions from the two 

near-real poles (of (3.20)) within I m a  < 0, together with two awkward complex 
integrals over the semi-infinite straight contours (03 x ei("+"), 0) and (0, co x e-iw). 
As it stands, then, this particular form is not adequately explicit, but may, of 
course, be equated with the result (4.6). 

We next turn our attention to the case when x < 0, i.e. in- < o < n-. The 
condition (4.5) is now, effectively, 

SIm 

either r-o 2 8 > -in, or #n- > 8 2 w ;  

i.e. the contour r must be any portion of either the circular arc joining R, ei(n-w) 
to - iR, + 0 + , or the circular arc joining - iR, + 0 - to R, eiw (see figure 2 ) .  If 
K > r ,  we are again faced with a selection of two possible contour deformations 

of the integral path for . Unless K = r ,  we can, for example, deform ( - R,, R,) 

onto the serrated path drawn in figure 2. But this will merely lead to just two 
integrals performed along the straight paths (co x eiw, 0)  and (0, a0 x ei(n-u)). To 
achieve the desired effect, we deform, for z < 0 and K 2 r,  ( - R,, R,) into the 
lower half-plane I m a  < 0 until we arrive at  the contour comprising the two 
quarter-circle arcs r3 and F4, completed by the narrow vertical indented loop P'. 
circumscribing relevant imaginary poles. Together with ( - R,, R,), this deformed 
contour encloses the remaining imaginary poles inside - R,, < Im a < 0 as well 
as the two near-real poles laol +ia/V( laol). As for rl, it can also be shown that 

RV 

S-R" 

approach zero as v -+ 00. Moreover, can be related to the appropriate 
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I 

FIGURE 2. Alternative contour deformations for z < 0. The situation 8s 2 + 0- (r < K ) ,  

or r -+ K + O -  (z < 0) is clearly traced by curved arrows. Again, the simple, new-real 
poles at laOl +is/V([a,,I) are present only if h ( U )  > ~ ( 0 ) .  

residues at  those simple poles encircled by 9-. Whereupon, we obtain for the 
integra'l in (3.2) 

m 

- 2ni residue {G*(a, r, K ;  e) eiaz) (x < 0), (4.7) 
v = l  -ilavlt$e/V(ilavl) 

00 

wherein C ranges over the semi-infinite set of simple poles along the negative 

I m a  axis, viz. -i(lavI -e/V(ilaul)) (Y = 1, ...,co) with lall V(ilall) > E .  Again, 

If h ( U )  < x ( O ) ,  the two near-real poles -t la0l +is/V(ila,l) are absent. In their 
place, we get two extra imaginary simple poles, viz. one a t  i(la,l +c/V(iIa,l)) 
withinIma > 0,andoneinsideIma < Oat - i ( ~ a o ~  -e/V(ila,,l)); laO[ V(ila,l) > E .  

There is no staggering modification to the above analysis. Pertinent deviations 
from the expressions (4.6) and (4.7) are not difficult to envisage (see last paragraph 

v = l  

wa > x(0).  

of 5 5) .  
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5. Exact results and interpretations 
The Green’s function, as defined by (3 .2) ,  is now obtained for the case 

A( U )  > x ( O ) ,  by essentially putting 6 = 0 in (4.6) and (4.7) and formulating the 
prescribed residues. As each of these is associated with merely a simple zero 
a = a, of Q(rl, ro, a; U ) ,  then residue {C*(a, r, K; 0 )  eia3G) = eiavx residue [ 1, where, 

via (3 .3) ,  (3.16) and the fact that Q(r,rO,a; U )  = &@,To, -a; U) (cf. (A9)), 
residue [ 3 is an odd function of a,, determinable from (3.3).  Whence, the com- 

bination of (4.6) and (4.7) leads to 

a v  O V  

aY 

H (  - x) being the Heaviside unit function, equal to 1 (z < 0) or 0 ( x  > 0) ,  and the 
suffix a denoting an a derivative. Our steady-state Green’s function is thus 
composed of an in$nite discrete superposition of terms which are strongly decaying 
like e-laJlxl (v = 1, ..., co) as x + & 00, together with a stationary sine wave which 
is encountered only upstream (i.e. in x < 0) of the source filament (3 .4) .  This  
stationary wave is of wavelength 2n-/la01 and has an amplitude dependent on r, 
and the reason why it exists strictly upstream is clearly because its sustaining 
energy, which is  propagated with the group velocity V(]a,]) ,  is, in view of (3.17), 
permanently convected upstream. This upstream phenomenon is, of course, a con- 
sequence of the applied radiation condition. The sine wave gradually disappears as 
x -+ 0 - , so that the expression (5.1) is indeed continuous across x = 0. 

The transverse distortion [ of a magnetic line of force of the vacuum field is 
uniquely determined in the steady state by applying the solution (5.1) to  (3.1). 
Thus, for A( U )  > ~ ( 0 ) ~  

Again, there exists an infinite superposition of strong, axially dissipative elements, 
accompanied by a stationary sine-cosine waw of wavelength 27r/JaO). At any point 
(x, r ) ,  this stationary wave is governed by an integral convolution with only the 
downstream ( z  > x )  part of the source function J (z ,  K ) ,  i.e. every cross-section of the 
source current distribution induces an upstream stationary-wave contribution. 
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positive a-zero (necessarily simple) of Q(rl, yo, a;  U ) .  The quantities 

are real and obtainable from (2.22)-(2.24). The quantity Y(T, rl, ilavl) is real by 
virtue of (A 11); see appendix. In  particular (cf. (A 19)), 

Regarding both (5.1) and (5.2), the wavenumber laO\ is the (only) real and 

Y ( r ,  rl ,  and Q(r, To, laol; U )  

‘W, r1, i 1a”l ) = Bn[J1(r,lav I ) Y1(rlayl) - w1la”l ) Jl(rla”l )I, (5.3) 
m 

v= 1 
J, and Y, representing the fundamental Bessel functions. Also, C is performed 

over all real, positive p-zeros at  p = ]a,] (v = 1, . . ., 00) of Q(y1, ro, i,8; U ) ,  which is 
real for real P and can be shown to be given by 

&OP[YO(~OP) J I ( Y 1 P )  - Jo(r0P) Yl(V1 P)1 
- 3 m  U) [ J l ( ? O P )  &b“lP) - Yl(r0P) J1(.1P)1- (5.4) 

Its  infinite set of positive zeros at /3 = 101~1, Ia21, ..., are all simple and sztisfy 
(3.10). It is now obvious that the form (5.1) is real. So is the form (5.2), provided 
that the source function J ( x ,  r )  is real. 

Each contribution to 5 is a double integral transform of the source function. 
In  particular, the stationary-wave member of E is a combination of finite I and 
K transforms of a Fourier sine transform of J ( a  + z, K ) ,  viz. 

Likewise, the exponentially decaying I a,l element is expressible as a combination 
of finite Hankel and Y transforms of the Laplace transform 

JOm [ ~ ( x  - z ,  K )  + ~ ( x  + z,  K ) ]  e-laulzdz. 

This is a Laplace transform (resulting from a convolution aspect) of an arbitrary 
forcing effect which can admit wave functions of its own accord, but does not 
induce additional stationary waves (i.e. of the magneto-acoustic type encountered 
all along) associated strictly with the given MGD system. The situation is quite 
different from that of Savage (1970, also 1967), wherein his ‘local disturbances’ 
are formulated as Laplace transforms of specific functions which a.re, effectively, 
the combination of a Fourier transform of the particular forcing effect used, as 
well as other factors. The latter may, or may not, generate magneto-acoustic 
waves that decay in the flow direction. The present study of the cylindrical case 
suggests the second possibility. 

The solutions (5.1) and (5.2) are exact. Suppose that the source function 
J(a,  r )  = X ( x )  Y(r)  and is distributed over a finite axial distance of 21: X ( x )  = 0 
in 1x1 > 1. Then the solution (5.2) behaves in thefarJieZd as 

5 = (known function of T )  x sin [laol ( z - z ) ]  dz + O(elcrllz) 

for x 4 -1, while 6 = O(e-lallx) for x 9 1. 
So far, all results assembled are valid only when A( U )  > x ( O ) ,  where A( 77) and 

x(0)  are given respectively by (2.17) and (3.13). Note that, with reference to the 
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initial undisturbed configuration, x(0) = 2 (cross-sectional area of jet)/(cross- 
sectional area of vacuum field). As indicated in 0 3, there is no acceptable solu- 
tion for A( 77) = ~ ( 0 ) .  On the other hand, suppose that A( U )  < ~ ( 0 ) .  In  this case, 
Q(rl, r,,, a; U )  has no real zeros, so that no (real) stationary wave is observed 
anywhere. However, Q(rl, ro, ip; U )  has one additional positive zero at  /3 = laO]. 
This zero is simple and satisfies (3.12). It gives rise to a further and stronger 
exponential decay O(e-1ao1lzl). Hence, briefly, the corresponding results for 
A( U )  < x(0) are derived by eliminating the sine wave in (5.1), as well as the sine- 

cosine wave in (5.2), and substituting 2, which starts from the index v = 0 ,  for 

. The asymptotic development of f ,  associated with the current source of 

03 

41 v = o  

v - 1  

restricted length 21, is now dominated, within 1x1 > I, by the factor e-l'o'lxl. 

Appendix 
Let w, a) = $(r ,  4 - W ( r ,  a), 

9 ( r ,  a) = K,(ra) Il(r1a) - U r a )  KlklE), 

(A 1) 

where $P, a) = r4Ko(ra) U r 1 4  +I,(..) KA.141, (A 2) 

(A 3) 
with T < T~ < 03 and &(a) and &(a) being the modified Bessel functions. In  
relation to (2.22)-(2.24), we see that 

$P, a) = W l ,  r ,  4, $(., a) = Yr1, r, 4, (A 4) 

while P(r, a) = Q(V1, r ,  a; U )  (A 5 )  

if, in (A l) ,  theparameter h E A( U )  defined by (2.17). The objective of this appen- 
dix is to determine appropriate properties of $(r,a) and P(r,a) required in 
dealing with a Green's function (8 3). First, we note that, via the recurrence rela- 
tions of (2.20), (A 1)-(A 3) produce 

(A+ l ) $ ( T , a ) + r a $ ( T , a ) p T  = -P(r,a). (A 6) 
THEOREM I. The quantities $(T,  a) and P(r,  a) (as well as $(r, a)) are analytic 

Proof. We use the following infinite series representations: 
functions of the complex variable a. 

m 

Il(a) = (&)2"+'/n!(n+ l)!, 
fL=O 

1 "  

2n=0 
K,(E) = a-'+I1(a)bg&-- 2 (&,)"+'(7(n+ l)+T(n+2))/n!(n+ I)!, 

where - 7(  1) = y (the Euler-Mascheroni constant) and 

Thus, as is well known, Il(a) and a-lI1(a) are analytic while Kl(a) is singular a t  
a = 0. However, from (A 3) and the given series, 

7(n+1) = I + * +  ...+ 1ln-y. 

$(v,a) = ~ l ( r a ) ~ l ( r l a ) l o g r r ~ l +  (ra)-1I1(rla) - (rla)-lIl(ra) 

Y (A7)  
1 4 1  ( c z ) ' ~ + ~ T ( ~  + 1) + 7(n + 2) + - 2 [r";"+l Il(ra) - r2"f1I1(r,a)] - 
2n=o n!(n+ l)! 
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which, for one thing, involves neither a logarithmic singularity nor a pole at 
a = 0. Contrary to expectations, then, $(r,a) is non-singular at a = 0, but is 
in fact an analytic function of a. The analyticity of P(T, a) in a follows from (A 6) 
and, consequently, that of #(r,  a) is implied by (A 1). Q.E.D. 

Evidently, from (A 3), @ = $(r,  a) satisfies the Bessel equation 

Note that 

the bar symbolizing a complex conjugate. Whence 

@(r , i Ima)  = $(~ , i Imu) ,  P( r , i Ima)  = P(r , i Ima) ,  (A 11)  

implying that @(rJ i Im a) and P(r, i Im a) are real. We observe that (A 9) is 
also deducible from (A 7) and the Il(a) series. We shall next investigate possible 
zeros of P(T, a) within the complex-a plane. But first, we need certain identities. 
Now, from (A S), we have for any a,, 

a a$ 
(a2 - a,”, M r ,  a) $(r, a,) = - ar (r$(r, 45 (r,  a) - r w ,  a g  ( r ,  a,)) > 

which can be integrated between the limits r = r0 ( > 0) ,  say, and r = rl ( > ro) by 
incorporating the fact that $(r1, a) = 0 (see (A 3)) and (A 6).  Thus, 

(a2 - 4)  C r 1 M r ,  a) @(r, a,) dr = Pb.0, a) @ P o y  a,) - m o >  a,) W O ,  a). (A 12) 
J ra 

So, at 
- 

a = a,, 

via (A 10). Also, on replacing a, by Z, in the expression (A 12) and then dif- 
ferentiating the result with respect to a, we obtain at a = a, 

I. 

where the suffix a denotes an a derivative. Note that, for any a,, $(r,  a,,) is not 
identically zero throughout ro < r < rl .  

Suppose that P(ro,a,,) = 0. Whereupon, (A 13) implies that either Rea, = 0, 
or Ima ,  = 0, or a, = 0. Then, from (A 14), 

which is non-vanishing unless a, = 0; i.e. P,(ro, a,) =k 0 and $(yo,  a,) =+ 0 unless 
a,, = 0. Also, from (A 7 )  and the Il(a) series, 

$(r, 0) = ( r t -  rz)/2r1r + 0 if r 4 rl ,  (A 16) 

so that, if av = 0 in (A 15), then the only possibility is P,(ro, 0) = 0. Thus we can 
state theorem 2 .  
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THEOREM 2. Any (existing) a-zero of €'(ro, a) is either purely real and simple, or 
purely imaginary and simple, or appears as a repeated zero a t  the origin a = 0. 
Furthermore, any such a-zero of P(ro, a) is never an a-zero of +(To,  a). 

Note. Letting a, = 0 and assuming P(ro, 0) = 0 the second a derivative of (A 12) 
yields at a = 0 

!ry 
Paa(r0, 0 )  @@o, 0) = 2 r[@(r,  0)l"r 9 0 

owing to (A 16). Therefore, if the zero at a = 0 arises, it does so as a double zero. 
We now go on to establish theorem 3. 

THEOREM 3. The function P(ro, a) has 
(i) exactly two real, symmetric (simple) zeros a = 4 a. if h > x ( O ) ,  
(ii) the double zero at a = 0 if h = x ( O ) ,  
(iii) no real zero if h < x ( O ) ,  where 

Proof. For a real positive argument a, the Bessel functions I,@) and K,(a) are 
known to be both positive; furthermore, they are monotonically increasing and 
decreasing, respectively, with increasing a (see e.g. Gray & Mathews 1922, 
chap. 7), i.e. 

whenever r,, < r < rl and 01 is real and > 0. In this case, and by virtue of (A 3), 

x(a) = a)/$(r07 a)* (A 17) 

Il(rla) > l,(ra) > 0, K,(ra) > K,(r,a) > 0, 

P(r,a)  > 0, (A 18) 

which is also valid at a = 0 owing to (A 16). Now, applying the form (A 1) to 
(A 12), we can express in terms of ~ ( a )  

On the left side, a2 - af is multiplied by a factor which is clearly positive whenever 
a and a, are real and > 0. Whereupon, the analytic function (of a real a) 

X(a) > ~(a,) for all a > a, 3 0. 

Therefore, in the a, K plane, the curve K = %(a) is continuous, smooth and is 
monotonically ascending with increasing positive a from the point (0, ~ ( 0 ) ) .  
Hence, if this curve cuts the horizontal line K = A, then it does so exactly once 
within a > 0. Obviously, for such an intersection to occur, it is first necessary 
that h > ~ ( 0 ) .  This condition alone is also sufficient, because K = ~ ( a )  is not 
bounded above by a horizontal asymptote as can be seen from the asymptotic 
approximation (of. $4)  ~ ( a )  N roa as a++co. If h < x ( O ) ,  there is no inter- 
section within a > 0. But the abscissa of any existing intersection in a > 0 is, 
via (A 1) and (A 17), area1 positive a-zero ofP(ro, a), andvice versa. Furthermore, 
in view of (A 9), the a-zeros of P(ro, a) must arise in symmetric pairs about a = 0. 
Consequently, statements (i) and (iii) of the theorem follow. The (double) 
zero at a = 0 appears if the line K = h meets the curve K = x(a) along the K axis, 
i.e. if h = ~ ( 0 ) .  This establishes statement (ii), and completes our proof. 

51 F L M  61 
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In terms of the fundamental Bessel functions J1(~) and Y l ( ~ )  

Il(iK) = iJ1(K), Kl(iK) = - &7(Jl(K) -iY1(K)). 

? M O ,  i K )  = M J l ( r O 4  Yl(T1K) -Ydr04 Jdr141, 

From (A 3), then, 

(A 19) 

which is real whenever K is real, consistent with (A 11). Now, the K-zeros of the 
square-bracketed expression in (A 19) have been analysed (Gray & Mathews 
op. cit.). There is an infinity of these zeros at  K = f 1 ~ ~ 1  (v = 1, ..., 00; K,  + 0 ) ,  all 
of which are real and simple, i.e. $(?,,a) has only simple imaginary zeros at  

THEOREM 4. Suppose that the entire set of zeros of $(~ , ,a )  at a = + i l ~ ~ l  
a = f i l K , I  (v = 1, ...,0O). 

(v = i, ..., 00) are arranged as a monotonic sequence: 

1K11 < lKpl < ... < lKnl < IKn+ll < ... . 
Then whatever the value of A, P(Y,, a) has an infinity of symmetric zeros at  

satisfying 
a = +ila,l (v = 1, ...,co), (A 20) 

(A 21) lK l l  < la11 < lKZl < la21  < . * *  < lKnl < Ian1 < IK,+11 < 

(i) If h > x ( 0 )  (with x(0) determined from (A 17)), the entire set of imaginary 

(ii) If h < x ( O ) ,  the entire set of imaginary a-zeros of P(ro,a) is definable by 
a-zeros of P(ro, a) is fully definable by (A 20) and (A 21). 

(A 20) and (A 21) together with two additional zeros at  a = & ila,] satisfying 

-14 < -la01 < 0 < la01 < IKlL (A 2 2 )  

Remarks. Actually, x(0) = 2ri/(r; - Y;) (see (3.13)). This theorem improves upon 
the last sentence of theorem 2, and provides an approximate location of those 
(simple) zeros of P(r,,a) along the I m a  axis relative to the known zeros of 
@(ro,a), viz. between any two zeros of the latter lies one zero of the former 
except for the two zeros f i ] ~ ~ l  of $(ro, a) nearest the origin. Between t,hese two, 
P(ro, a) is non-vanishing for imaginary a whenever h > x ( O ) ,  but vanishes twice 
if h < x( 0) , with equality corresponding to two coincident zeros forming a double 
zero at a = 0 (see statement (ii) of theorem 3). Apparently, then, as h approaches 
~ ( 0 )  from below, the a-zeros k ila,l converge vertically towards coincidence at  
a = 0. They then diverge laterally, transformed into real zeros f a,, along the 
Re a axis once h exceeds the level ~ ( 0 )  (cf. theorem 3). Though all other imaginary 
a-zeros of P(ro, a) do move with this A-variation, nevertheless they never stray 
off the Im a axis, and they remain governed by (A 21). 

Proof. The symmetry distribution of all a-zeros is a consequence of (A 9). Now, 
substitution into (A 14) of a, by the a-zero il~,l of $(yo, a) yields, for I, = 1, . . ., 00, 

both factors to the left of the equals sign being real (cf. (A 11)). At two con- 
secutive positive K-zeros of $(ro, ix), the derivative l?+(!r0, k) /&~  assumes opposite 



MCD p h e n o m e m n  in jet-threaded cylindrical field 803 

signs, and so does P ( r , , i ~ )  by virtue of (A 23). Therefore, between any two 
amongst the infinity of positive consecutive K-zeros of @(r,, i ~ ) ,  P(ro, i ~ )  vanishes 
at least once for real K. In particular, then, P(ro,a) does possess an infinity of 
imaginary a-zeros at, say, a = ? ila,l (v = 1, . . ., 00). Whereupon, from (A 15), 

Whence, by an argument similar to that above, +(yo, i ~ )  takes opposite signs a t  
any two consecutive positions K = lay\ and lav+ll, so that it does vanish between 
these positions. Suppose that [a,l < I c c , + ~ ~  (v = 1, ...,00). If we assume that 
+(yo, i ~ )  vanishes more than once in lav] < K < lau+ll, we arrive at a contradiction 
of the proposition that (av( and are consecutive. Hence, @@,, i ~ )  vanishes 
exactly once in 101~1 < K < la,,+l\. Likewise, P(T, ,~K)  vanishes exactly once in 

I K , , ~  < K < (K,,+11. Therefore the statement including (A 20) and (A 21) is certainly 
true. In  this case, a = ila,l (v = 1 , .  .., co) constitute the only imaginary zeros of 
P(T,, ia) beyond the segment - 1 ~ ~ 1  < I m a  < 1 ~ ~ 1  of the I m a  axis. 

From (A 1)  and (A 17) ,  we have 

p ( T o ,  i K )  = @(To, i K )  [ X ( i K )  - h]. 

?/!(Yo, 0 )  = (+r;)/2?"1r0 > 0. 

(A 25)  

(A 26) From (A 16), 

Case h > ~ ( 0 ) .  Here, P(r,,O) < 0, so that a P ( r , , i ~ ) / a ~  > 0 at K = a*, the 
smallest positive K-zero of P(?-,, i~). Hence via (A 24), $-(ro, ia*) < 0, implying, 
when coupled with the inequality of (A 26), that $(ro, i ~ )  has just one positive 
K-zero, precisely, its smallest positive K-zero 1 ~ ~ 1 ,  inside 0 < K < a*. By virtue of 
(A 21), a* = lall. Statement (i) of the theorem is thus verified. 

Case h < ~ ( 0 ) .  In view of (A 26), 8$(r0, i ~ ) / a ~  < 0 at K = min I K , , ~  3 1 ~ ~ 1 .  So, 

(A 23) reveals that P(ro,ilKll) < 0. But P(ro, 0) > 0 by (A 25) and (A 26). Hence, 
inside 0 < K < 1 ~ ~ 1 ,  P(vO, i ~ )  has exactly one zero which obviously is not JoclJ, 
but must be a zero K = laOl additional to the set Ia,l (v = I, . . ., co). This proves 
the statement (ii). Q. E.D. 

V 
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